Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(19): 5774-5782, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709116

RESUMO

Flexible shortwave infrared detectors play a crucial role in wearable devices, bioimaging, automatic control, etc. Commercial shortwave infrared detectors face challenges in achieving flexibility due to the high fabrication temperature and rigid material properties. Herein, we develop a high-performance flexible Te0.7Se0.3 photodetector, resulting from the unique 1D crystal structure and small elastic modulus of Te-Se alloying. The flexible photodetector exhibits a broad-spectrum response ranging from 365 to 1650 nm, a fast response time of 6 µs, a broad linear dynamic range of 76 dB, and a specific detectivity of 4.8 × 1010 Jones at room temperature. The responsivity of the flexible detector remains at 93% of its initial value after bending with a small curvature of 3 mm. Based on the optimized flexible detector, we demonstrate its application in shortwave infrared imaging. These results showcase the great potential of Te0.7Se0.3 photodetectors for flexible electronics.

2.
Small ; 20(2): e2304721, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670209

RESUMO

Wide bandgap semiconductors, particularly In2 O3 :Sn (ITO), are widely used as transparent conductive electrodes in optoelectronic devices. Nevertheless, due to the strohave beenng scattering probability of high-concentration oxygen vacancy (VO ) defects, the mobility of ITO is always lower than 40 cm2  V-1  s-1 . Recently, hydrogen-doped In2 O3 (In2 O3 :H) films have been proven to have high mobility (>100 cm2  V-1  s-1 ), but the origin of this high mobility is still unclear. Herein, a high-resolution electron microscope and theoretical calculations are employed to investigate the atomic-scale mechanisms behind the high carrier mobility in In2 O3 :H films. It is found that VO can cause strong lattice distortion and large carrier scattering probability, resulting in low carrier mobility. Furthermore, hydrogen doping can simultaneously reduce the concentration of VO , which accounts for high carrier mobility. The thermal stability and acid-base corrosion mechanism of the In2 O3 :H film are investigated and found that hydrogen overflows from the film at high temperatures (>250 °C), while acidic or alkaline environments can cause damage to the In2 O3 grains themselves. Overall, this work provides insights into the essential reasons for high carrier mobility in In2 O3 :H and presents a new research approach to the doping and stability mechanisms of transparent conductive oxides.

3.
Research (Wash D C) ; 6: 0125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223485

RESUMO

Lead halide perovskite nanocrystals have recently demonstrated great potential as x-ray scintillators, yet they still suffer toxicity issues, inferior light yield (LY) caused by severe self-absorption. Nontoxic bivalent europium ions (Eu2+) with intrinsically efficient and self-absorption-free d-f transition are a prospective replacement for the toxic Pb2+. Here, we demonstrated solution-processed organic-inorganic hybrid halide BA10EuI12 (BA denotes C4H9NH4+) single crystals for the first time. BA10EuI12 was crystallized in a monoclinic space group of P21/c, with photoactive sites of [EuI6]4- octahedra isolated by BA+ cations, which exhibited high photoluminescence quantum yield of 72.5% and large Stokes shift of 97 nm. These properties enable an appreciable LY value of 79.6% of LYSO (equivalent to ~27,000 photons per MeV) for BA10EuI12. Moreover, BA10EuI12 shows a short excited-state lifetime (151 ns) due to the parity-allowed d-f transition, which boosts the potential of BA10EuI12 for use in real-time dynamic imaging and computer tomography applications. In addition, BA10EuI12 demonstrates a decent linear scintillation response ranging from 9.21 µGyair s-1 to 145 µGyair s-1 and a detection limit as low as 5.83 nGyair s-1. The x-ray imaging measurement was performed using BA10EuI12 polystyrene (PS) composite film as a scintillation screen, which exhibited clear images of objects under x-ray irradiation. The spatial resolution was determined to be 8.95 lp mm-1 at modulation transfer function = 0.2 for BA10EuI12/PS composite scintillation screen. We anticipate that this work will stimulate the exploration of d-f transition lanthanide metal halides for sensitive x-ray scintillators.

4.
Adv Mater ; 35(24): e2211522, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36972712

RESUMO

Short-wave infrared detectors are increasingly important in the fields of autonomous driving, food safety, disease diagnosis, and scientific research. However, mature short-wave infrared cameras such as InGaAs have the disadvantage of complex heterogeneous integration with complementary metal-oxide-semiconductor (CMOS) readout circuits, leading to high cost and low imaging resolution. Herein, a low-cost, high-performance, and high-stability Tex Se1- x short-wave infrared photodiode detector is reported. The Tex Se1- x thin film is fabricated through CMOS-compatible low-temperature evaporation and post-annealing process, showcasing the potential of direct integration on the readout circuit. The device demonstrates a broad-spectrum response of 300-1600 nm, a room-temperature specific detectivity of 1.0 × 1010 Jones, a -3 dB bandwidth up to 116 kHz, and a linear dynamic range of over 55 dB, achieving the fastest response among Te-based photodiode devices and a dark current density 7 orders of magnitude smaller than Te-based photoconductive and field-effect transistor devices. With a simple Si3 N4 packaging, the detector shows high electric stability and thermal stability, meeting the requirements for vehicular applications. Based on the optimized Tex Se1- x photodiode detector, the applications in material identification and masking imaging is demonstrated. This work paves a new way for CMOS-compatible infrared imaging chips.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36310354

RESUMO

Indium tin oxide (ITO) is widely used in a variety of optoelectronic devices, occupying a huge market share of $1.7 billion. However, traditional preparation methods such as magnetron sputtering limit the further development of ITO in terms of high preparation temperature (>350 °C) and low mobility (∼30 cm2 V-1 s-1). Herein, we develop an adjustable process to obtain high-mobility ITO with both appropriate conductivity and infrared transparency at room temperature by a reactive plasma deposition (RPD) system, which has many significant advantages including low-ion damage, low deposition temperature, large-area deposition, and high throughput. By optimizing the oxygen flow during the RPD process, ITO films with a high mobility of 62.1 cm2 V-1 s-1 and a high average transparency of 89.7% at 800-2500 nm are achieved. Furthermore, the deposited ITO films present a smooth surface with a small roughness of 0.3 nm. The stability of ITO films to heat, humidity, radiation, and alkali environments is also investigated with carrier mobility average changes of 19.3, 4.4, and 4.7%, showcasing strong environmental adaptability. We believe that stable ITO films with high mobility prepared by a low-damage deposition method will be widely used in full spectral optoelectronic applications, such as tandem solar cells, infrared photodetectors, light-emitting diodes, etc.

6.
Small ; 18(44): e2203677, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36148851

RESUMO

Infrared solar cells are regarded as candidates for expanding the solar spectrum of c-Si cells, and the window electrodes are usually transparent conductive oxide (TCO) such as widely used indium tin oxide material. However, due to the low transmittance of the TCO in the near-infrared region, most near-infrared light cannot penetrate the electrode and be absorbed by the active layer. Here, the propose a simple procedure to fabricate the window materials with high near-infrared transmittance and high electrical conductivity, namely the hydrogen-doped indium oxide (IHO) films prepared by room temperature magnetron sputtering. The low-temperature annealed IHO conductive electrodes exhibit high mobility of 98 cm2 V-1 s-1 and high infrared transmittance of 85.2% at 1300 nm, which endows the lead quantum dot infrared solar cell with an improved short-circuit current density of 37.2 mA cm-2 and external quantum efficiency of 70.22% at 1280 nm. The proposed preparation process is simple and compatible with existing production lines, which gifts the IHO transparent conductive film great potential in broad applications that simultaneously require high infrared transmittance and high conductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...